A Dimer Alkaloid of $6,7 \beta$-Oxidodeoxynupharidine ${ }^{1}$

Robert T. LaLonde,* Chun Fook Wong, and Kala C. Das
Contribution from the Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210. Received April 13, 1972

Abstract

A} \mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4}\) alkaloid, corresponding in structure to a dimer of $6,7 \beta$-oxidodeoxynupharidine, was isolated from extracts of Nuphar luteum subsp. macrophyllum. The structure was elucidated by chemical and spectral means and was confirmed by the transformation of Δ^{6}-dehydrodeoxynupharidine to the C_{30} dimer. A stereoisomeric C_{30} dimer corresponding to the $6,7 \alpha$-oxidodeoxynupharidine was prepared and the existence of a mixed dimer was detected. Deoxynupharidin- 7β-ol and 7 -epideoxynupharidin- 7α-ol were obtained in the metal hydride reductions of $6,7 \beta$-oxidodeoxynupharidine dimer and 7 -epideoxynupharidine- $6,7 \alpha$-diol, respectively.

TThe aquatic macrophyte, Nuphar luteum, family Nymphaeaceae, produces a number of alkaloids possessing a 3 -furyl group attached to quinolizidine or piperidine ring systems. These structural features all are incorporated within a regular sesquiterpenic framework. ${ }^{2}$ Among the more structurally interesting alkaloids ${ }^{3}$ discovered to date are the C_{30} compounds which consist of two C_{1}, (3 -furyl)quinolizidine units fused in a somewhat symmetrical fashion through carbon and a third heteroatom, sulfur. This type of structure is exemplified by dihydroxythionuphlutineA and $-B$ (1), two stereoisomeric alkaloids which we

1
recently isolated from N. luteum subsp. macrophyllum. ${ }^{4}$
In continuing our investigation of various other chromatographic fractions obtained from the same extract from which the dihydroxythionuphlutines originated, we discovered in the more polar fractions a substance which on preliminary investigation appeared to possess properties consistent with either the 2 -aminooxirane 2 or a dimer such as $\mathbf{3}$. Our interest in the structure of this substance intensified when our search for reported 2 -aminooxiranes revealed that although 2 -aminooxiranes have been postulated for some time as intermediates in various reactions, they have been prepared only recently ${ }^{5}$ and there is still relatively little known about the chemistry of this type of compound and its diol and dimer derivatives. ${ }^{6,7}$ This paper describes the investigation which led to the isolation, establishment of structure and the preparation of the 2 -aminooxirane dimer 3.

[^0]
$$
3 \mathrm{~F}=3 \text {-furyl }=
$$

2, $\mathrm{R}_{\mathrm{i}}, \mathrm{R}_{2}=\beta$-oxido; $\mathrm{R}_{3}=\mathrm{CH}_{3}$
4, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{CH}_{3}$
7, $\mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{OH} ; \mathrm{R}_{3}=\mathrm{CH}_{3}$
8, $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OH} ; \mathrm{R}_{3}=\mathrm{CH}_{3}$
11, $\mathrm{R}_{1}=\mathrm{D} ; \mathrm{R}_{2}=\mathrm{OH} ; \mathrm{R}_{3}=\mathrm{CH}_{3}$
12, $\mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\mathrm{OH}$
13, $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\mathrm{OH}$

3

5

6
A $4.5-\mathrm{mg}$ sample of the crystalline 3 was isolated by repeated column chromatography of one of the original more polar fractions obtained from the plant extract. The infrared spectrum revealed the presence of the 3 -furyl group and several peaks in the $\mathrm{C}-\mathrm{O}$ stretching region not found in the spectrum of deoxynupharidine (4). The nmr chemical-shift values and splitting patterns indicated the presence of structural features

The base peak in the mass spectrum was $m / e 231$ which corresponded to the molecular weight of a dehydrodeoxynupharidine. Also observed were very low intensity peaks at $m / e 246$ and 248 corresponding to $231+16-1$ and $231+16+1$, respectively. A very weak peak at $m / e 493$ corresponded to the dimer 3 less one hydrogen atom. Generally the mass spectrum appeared similar to that observed earlier for Δ^{6}-dehydrodeoxynupharidine (5) ${ }^{8}$ though the overall com-

[^1]parison could not be made with a great deal of confidence because of the much lower intensities of the peaks of the isolated compound below $m / e 231$. However, both spectra showed peaks at $m / e 216$ (231$\left.\mathrm{CH}_{3}\right)$ but no peak at $m / e 214\left(231-\mathrm{CH}_{3}\right.$ and $\left.\mathrm{H}_{2}\right)$ where the base peak of Δ^{3}-dehydrodeoxynupharidine (6) ${ }^{9}$ occurs. Thus the data obtained at this point suggested the presence of a deoxynupharidine skeleton with oxygenated carbons at C_{6} and C_{7}.

The question of whether the isolated material was the 2 -aminooxirane (2) or its dimer 3 was answered convincingly in a number of ways. First, the $100-$ MHz nmr when run in CCl_{4} displayed two overlapping quartets corresponding to the $\mathrm{C}_{4} \mathrm{H}$ and $\mathrm{C}_{4^{\prime}} \mathrm{H}$. Second, the $60-\mathrm{MHz} \mathrm{nmr}$ when run in benzene showed two singlets in a $1: 1$ ratio corresponding to $\mathrm{C}_{6} \mathrm{H}$ and $\mathrm{C}_{6}, \mathrm{H}$. These nmr properties clearly indicate that more than a single $\mathrm{C}_{4} \mathrm{H}$ and $\mathrm{C}_{6} \mathrm{H}$ are involved in the structure. Consequently, the oxirane structure could be dismissed. Moreover, the high-resolution mass spectra gave a satisfactory fit for the calculated value corresponding to $\mathrm{M}^{+}-1$ and the isobutane chemical ion mass spectra gave adduct ions corresponding to $\mathrm{M} \cdot \mathrm{C}_{4} \mathrm{H}_{8}{ }^{+}$and $\mathrm{M} \cdot \mathrm{H}^{+}$. Finally, the determination of the molecular weight in benzene solution was carried out by vapor phase osmometry. Values of 510 and 517 were obtained.

In the course of isolating the 2 -aminooxirane dimer 3 we obtained a second more polar substance which was finally purified by arduous preparative layer chromatography. Storage of this substance neat in the cold under nitrogen for 2 days led to the formation of a contaminant having the properties similar to those of the first of the two substances isolated, the 2 -aminooxirane dimer. Indeed, when the dimer was treated with aqueous acid and then base and the basified solution was extracted, the extract afforded a highly polar hydroxyl containing compound having the tle and ir properties virtually identical with those of the second substance isolated. In time the hydroxylated compound reverted to the less polar dimer as evidenced by tlc and ir. These experiments indicated the two substances isolated were related by hydration-dehydration. On the basis of subsequent study which demonstrated the structure of the dehydrated form to be 3, the hydrated form was deduced to be the hydrolysis product of 3 , the diol 7. This deduction was supported by ir and nmr examinations of a freshly prepared sample of the hydrated form.

Since the dehydrated form was the more stable we decided it would be the more readily investigated. However, before proceeding with further studies on the limited amount of pure isolated material, we next investigated a fraction obtained from the first of the sequence of chromatographic separations. This fraction was examined through metal hydride and deuteride reductions in order to confirm the presence of a hemiaminal, or hemiaminal ether, in the plant extract and to ascertain the structure of the hemiaminal through a study of the products obtained by its reduction. As determined by tlc, the fraction examined contained a mixture of the 2 -aminooxirane dimer and its hydrolysis product as well as other bases. Treatment of this fraction with sodium borohydride in methanol or lith-
(9) R. T. LaLonde, J. T. Woolever, E. Auer, and C. F. Wong, Tetrahedron Lett., 1503 (1972).

Figure 1. Principal mass spectral fragmentation modes of deoxy-nupharidin- 7β-ol (8). Numbers in parentheses refer to m / e for deoxynupharidin-7 β-ol- $6-d_{1}$.
ium aluminum hydride in ether gave deoxynupharidin7β-ol (8). The spectral properties and deduced structural features most pertinent to establishing the gross structure were the following. The ir showed hydroxyl bands at $2.8-3.2 \mu$ and 3 -furyl bands at 6.66 and 11.43 μ. The nmr revealed: (1) a doublet methyl characteristic of the $\mathrm{CH}_{3} \mathrm{C}(-\mathrm{C}-)_{2} \mathrm{H}$ group; (2) a singlet methyl, at slightly lower field, characteristic of $\mathrm{CH}_{3} \mathrm{C}$ -$(-\mathrm{C}-)_{2} \mathrm{OH}$; (3) a broad singlet attributable to an OH group since it disappeared on deuterium oxide addition; (4) a quartet at $\delta 2.53(J=11$ and 2.5 Hz$)$ assignable to the $\mathrm{C}_{6} \alpha-\mathrm{H}$ (equatorial) on the basis of its splitting pattern, chemical shift, and known nmr properties of the same proton in deoxynupharidine (4); ${ }^{10}$ (5) a quartet at $\delta 2.93$ assignable to the $\mathrm{C}_{4} \beta-\mathrm{H}$ (axial) on the same basis applied in assigning the $\mathrm{C}_{6} \alpha-\mathrm{H}$. The $\delta 2.53$ quartet was attributed to the C_{6} equatorial proton being coupled to the geminal C_{6} axial proton and to the C_{8} equatorial proton. The orientation of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds separating C_{6} and C_{8} equatorial protons corresponds to the familiar W arrangement sufficient for long-range coupling. ${ }^{11}$

The mass spectrum of deoxynupharidin-7 β-ol (8) revealed a parent ion peak at $m / e 249$ which corresponded to the molecular weight of deoxynupharidine plus one oxygen atom. Intense ions at $m / e 81,94$ (100%), 107, and 136 indicated that the tertiary OH group was not incorporated into ring A. The last given group of ions is also present in the mass spectrum of deoxynupharidine and high resolution mass spectral and deuterium labeling studies have demonstrated their origin as shown in Figure $1 .{ }^{9}$ The presence of m / e 114, the second strongest peak in the mass spectrum of 8 , indicated that the tertiary OH group was located in ring B. This assignment was supported by the presence of $m / e 178(23 \%)$ whose intensity was much enhanced relative to that observed in the mass spectrum of deoxynupharidine. High-resolution and labeling studies show that $m / e 178$ should be represented largely by fragment 9 when generated from deoxynupharidine but by fragment 10 when generated from the thiospi-

9

10
rane type alkaloids such as thionuphlutine- A and $-B$ (1) (C_{6} and $C_{6^{\prime}}$ deoxy). Reasonably, the enhanced intensity of $m / e 178$ in the mass spectrum of deoxy-

[^2]nupharidin-7 β-ol (8) can be ascribed to the presence of a C_{7} tertiary hydroxyl group which preferentially facilitates fission of the $\mathrm{C}_{6}-\mathrm{C}_{7}$ bond through stabilization of the odd electron at C_{7}.

When the fraction containing the 2 -aminooxirane dimer and its hydrolysis product was reduced with sodium borodeuteride, deoxynupharidin-7 β-ol- $6-d_{1}$ resulted. The $\delta 2.53$ signal, a quartet in the unlabeled sample, was observed as a broad singlet in the labeled sample. As for the mass spectrum, the parent ion was shifted to $m / e 250$ and $m / e 136,107,94$, and 81 were retained while $m / e 114$ was shifted to 115 . m/e 178 was shifted to 179 . Thus, on the basis of the structure assigned to deoxynupharidin- 7β-ol the deuterium labeled alcohol must be deoxynupharidin-7 α-ol- $6-d_{1}$ (11). Finally, a sample containing only the 2 -aminooxirane dimer and its hydrolysis product was reduced with sodium borohydride to obtain as the only product the same tertiary alcohol formed by reduction of the fraction containing not only the 2 -aminooxirane dimer and its hydrolysis product but other bases as well. Thus the metal hydride reduction series of experiments demonstrated the incorporation of one or more regular deoxynupharidine skeletal units in the structure of the 2-aminooxirane dimer and supported the preliminary spectral evidence which indicated that oxygen functions were located at C_{6} and C_{7}.

To conclude the structure determination and to obtain a quantity large enough for a more extensive examination, a sample of the 2 -aminooxirane dimer was prepared through the osmium tetroxide oxidation of Δ^{6}-dehydrodeoxynupharidine (5). The diol 7 initially formed by this oxidation underwent dehydration on standing to afford the desired 2 -aminooxirane dimer 3, whose ir, nmr, mass spectral ORD, and tlc properties were identical with those of the 2 -aminooxirane dimer originating from the plant extract. Moreover, the sodium borohydride reductions of two mixtures of 2-aminooxirane dimer and diol-the one obtained from the plant extract and the other by synthesis-gave two samples of crystalline 7β-ol 8 whose physical properties were identical with one another.

In addition to the $6,7 \beta$-diol 7 the osmium tetroxide oxidation of the Δ^{6}-enamine also furnished the epimeric 7 -epideoxynupharidin-6,7 α-diol (12) whose elemental analysis and spectral properties were consistent with the structure assigned (see Expeimental Section). Sodium borohydride reduction of the diol 12 gave 7-epideoxynupharidin- 7α-ol whose configuration at C_{7} was established by the concentration independence of the intramolecular hydrogen-bonded OH group absorbing at $3520 \mathrm{~cm}^{-1}$ in the ir. In contrast, the ir of deoxynupharidin- 7β-ol displayed a hydrogen-bonded OH group ($3520-3300 \mathrm{~cm}^{-1}$) which disappeared completely at the lower concentration level where the band of the 7α-ol persisted. It follows that the configuration of C_{7} in the $6,7 \beta$-diol 7 and related 2 -aminooxirane dimer 3 must be the same as that in deoxynupharidin- 7β ol. Significantly, both 7β-, and 7α-ols show strong Bohlmann absorption. ${ }^{12}$ Therefore, both alcohols possess trans-fused quinolizidine ring systems. Interestingly, neither of the two diols nor the 2 -aminooxirane dimer 3 exhibit Bohlmann bands.

[^3]Contrasting with the spontaneous dehydration of the $6,7 \beta$-diol, the $6,7 \alpha$-diol 12 remained in the diol form but could be dehydrated by azeotropic distillation of the water of dehydration. Water absorbed by tlc plates was sufficient to convert the dehydrated form back to the diol 12. As for the structure of the dehydrated form, the low- and high-resolution electron impact mass spectrum gave no evidence for a parent ion at $m / e 494$, though a low intensity peak was observed at $m / e 493$. However, the isobutane chemical ion mass spectrum gave adduct ions corresponding to $\mathrm{M} \cdot \mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}$and $\mathrm{M} \cdot \mathrm{H}^{+}$. Therefore, the product resulting from the $6,7 \alpha$-diol would be the dimer 14 .

14
The difficulty with which the $6,7 \alpha$-diol undergoes 2-aminooxirane dimer formation, relative to the $6,7 \beta$ diol, would seem to be the result of the increased steric demands of the 7α axial hydroxyl group in nucleophilic attack on $\mathrm{C}_{6^{\prime}}$. Reasonably, the electrophile in the dimerization is the iminium ion which may be formed by the loss of protonated OH from C_{6}.

A mixed dimer was formed by mixing the $6,7 \alpha-$ diol 12 and the 2 -aminooxirane dimer 3. The existence of the mixed dimer was detected by tlc experiments, the details of which are given in the Experimental Section. Sodium borohydride reduction of the mixed dimer gave a mixture of deoxynupharidin- 7β-ol (8) and 7 -epideoxynupharidin-7 α-ol (13).

The two most important questions pertaining to the stereochemistry of the dimer 3 centered on the mode of quinolizidine ring fusion and the configuration at C_{6} and $C_{6^{\prime}}$. We observed that the nmr signal for the angular C_{7} methyl groups was shifted downfield while the signal for the secondary C_{1} methyl groups was shifted upfield on changing the solvent from deuteriochloroform to benzene. These benzene-induced shifts are consistent with both angular methyl groups being axial and both secondary methyl groups being equatorial in two quinolizidine systems each of which contains two trans-fused, six-membered rings in chair conformations. The result and its interpretation are in agreement with the previously observed, benzeneinduced shift behavior of axial and equatorial methyl groups in quinolizidine Nuphar alkaloids. ${ }^{13,14}$
(13) C. F. Wong and R. T. LaLonde, Photochemisiry, 9, 659 (1970).
(14) Similar benzene-induced shift behavior of methyl groups in 1,3dioxanes and steroidal sapogenins has been observed: see (a) J. E.

The detection of chemical shift nonequivalent C_{4} and C_{4}, protons and C_{6} and C_{6}, protons, as referred to earlier, was of utmost importance in deducing the configurations of C_{6} and $\mathrm{C}_{6^{\prime}}$. Accepting the above conclusion about the nature of the quinolizidine ring stereochemistry restricts the possible structures to three stereoisomeric 2-aminooxirane dimers differing in configuration at C_{6} and $\mathrm{C}_{6^{\prime}}$. These are 3, 3a, and 3b.

3a

3b

Molecular models reveal that 3b would have the central dioxane ring locked in a twist-boat conformation ${ }^{15}$ and would belong to molecular symmetry point group C_{2}. Consequently, 3b would have equivalent groups. ${ }^{16}$ Of primary significance relative to the nmr results, C_{4} and $\mathrm{C}_{4^{\prime}}$ protons would be chemical-shift equivalent as would the C_{6} and C_{6}, protons. Since the nmr studies show these sets of protons to be chemical-shift nonequivalent, $\mathbf{3 b}$ can be dismissed.

The central dioxane ring of 3a may possess a twistboat conformation and thereby give a structure belonging to point group C_{2}. Such a structure can be dismissed for the same reason that $\mathbf{3 b}$ was dismissed. Alternatively, 3a may possess a dioxane ring possessing a chair conformation and thereby give a structure belonging to point group C_{1}. However, one or the other rings fused to the chair dioxane ring must assume a twist-boat conformation. Molecular models reveal such a structure to be a prohibitively high energy form. Therefore, we prefer structure 3 (point group C_{1}). Only in stereoisomer 3 is it possible to combine the two quinolizidine systems possessing trans-fused chair rings to a chair dioxane ring.

Some comment regarding the origin of the $6,7 \beta-$ diol and the corresponding 2 -aminooxirane dimer would seem appropriate in concluding this report. A plausible source of the $6,7 \beta$-diol is air oxidation of the Δ^{6}-dehydrodeoxynupharidine (5). In fact, air oxidation of the latter in ether at room temperature for 5 days produces, among several other products, both the $6,7 \beta$ - and the $6,7 \alpha$-diols 7 and 12 , respectively. Evidence for their formation is the isolation of deoxy-nupharidin- 7β-ol (8) and 7 -epideoxynupharidin-7 α ol (13) from a mixture of bases obtained by sodium borohydride reduction of the air oxidation mixture. Subsequent to obtaining this result, a small amount of the plant material was re-examined for the presence of the $6,7 \alpha$-diol. The re-examination involved the following sequence: extraction of freshly ground plant material under nitrogen, chromatographic separation of fractions which would contain the $6,7 \alpha-$ and $6,7 \beta$-diols, sodium borohydride reduction of each of the two fractions considered to contain diols, but

[^4]determined to be free of 7α - and 7β-ols, and chromatographic and spectrometric examination of each of the two reduction products. As expected, one reduction product was identified as deoxynupharidin-7 β-ol (8). The other was 7 -epideoxynupharidin-7 α-ol (13), the detection of which indicates the presence of the $6,7 \alpha-$ diol 12 in the extract. Whether the $6,7 \beta$ - and $6,7 \alpha$ diols are true plant metabolites or are formed by air oxidation of plant-produced Δ^{6}-enamine in the course of preparing the plant material for extraction is still an open question. We are attempting to answer this question by a search for the Δ^{6}-enamine in the plant and by further studies of its oxidation.

Experimental Section

Spectra were obtained as follows: nmr in solution as indicated, 2% TMS ($\delta 0.0$), on Varian A-60 and HA-100 spectrometers, time averaged spectra using a Varian-Data 6201 computer, by M. L. Green, H. Jennison, and A. Vulcano, symbols s, d, t, q, m, and br refer to singlet, doublet, triplet, quartet, multiplet, and broad, respectively; ir in solution as indicated, Perkin-Elmer, Models 137 and 621 , symbols, $\mathrm{s}, \mathrm{m}, \mathrm{w}, \mathrm{sp}$, and br refer to strong, moderate, weak, sharp, and broad, respectively; low-resolution mass spectrum at 70 eV , direct inlet at 110°, Hitachi-Perkin-Elmer Model RMU6E by H. Jennison; high-resolution and chemical ion mass spectra by R. Foltz, the High Resolution Mass Spectrometry Laboratory, Battelle's Columbus Laboratories, Columbus, Ohio, AEI MS-9 with SRIC Model CIS-2 combined chemical ionization and electron impact ion source, high resolution mass spectra by direct insertion probe at 120°, source temperature 200°; ORD in solution as indicated using a Durrum-Jasco spectropolarimeter-5. Melting points were determined on a Köfler micro hot stage and Mel-Temp apparatus and are uncorrected. Optical rotations were determined in solution as indicated on a Perkin-Elmer Model 141 polarimeter. Tlc was performed on $20-\mathrm{cm}$ plates coated with the adsorbent specified at a uniform thickness of 0.25 mm , unless otherwise indicated, and using the solvents specified; microscope slides were uniformly coated with 0.25 mm of adsorbent for tlc. Assignment of R_{f} values to specific compounds was made by comparison with an authentic sample on the same plate. Spots were developed by uv and Drangendorff spray reagent. Glc was carried out on an F \& M Research Chromatograph, Model 810, equipped with a flame ionization detector and using He as the carrier gas. The elemental analyses and the determination of molecular weights by vapor phase osmometry were carried out by Galbraith Laboratories, Knoxville, Tenn.

Isolation of $6,7 \beta$-Oxidodeoxynupharidine Dimer and Deoxy-nupharidine-6,7- β-diol. Powdered rhizomes of Nuphar luteum subsp. macrophyllum (2.7 kg) were soaked with 5.4 l . of 10% aqueous NH_{3} for 24 hr . The resulting material was shaken with 10.8 . of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 3 hr . The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was siphoned off and shaken twice with 21 . of $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. The combined acid solution was cooled and basified to pH 10 with about 500 ml of concentrated aqueous NH_{3} in ice. The basic solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal of the solvent at the rotary evaporator gave 29.7 g of residue, 24 g of which was treated in the following manner in order to facilitate chromatographic separation. The residue sample was mixed with 250 ml of benzene and 20 g of alumina (activity III) and the resulting mixture was shaken vigorously. The suspension was allowed to settle and the benzene solution decanted. The alumina was washed with small quantities of benzene and air dried. The combined benzene washings and original benzene solution were added to a column ($75 \times 5 \mathrm{~cm}$) of 720 g of alumina packed in hexane. Finally the air-dried alumina was added to the top of the column. The column was eluted with 11 . of hexane and then with hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the proportions and amounts in liters as follows: $99: 1,1.4 ; 95: 5,2.8 ; 95: 5,2.4 ; 8: 2$, $0.7 ; 1: 1,2.5 ; 1: 3,1.6$. Thereafter the column was eluted with 5.8 1. of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.2$ 1. of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (99:1), and finally with 2.31 . of MeOH . The $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($99: 1$) fraction afforded 2.5 g of residue A which was stored in a refrigerator for 8 months prior to examination. A $600-\mathrm{mg}$ sample of residue A was added to a column of alumina (45 g , activity II) which was eluted with 500 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (fraction $1,10 \mathrm{mg}$), 200 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-0.4 \% \mathrm{MeOH}$ (fraction 2, 96 mg), and 75 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-0.4 \% \mathrm{MeOH}$ (fraction 3, 174 mg). Fraction 1 was rechromatographed on alumina (ac-
tivity III) using hexane- 5% ether (100 ml) to obtain 4.5 mg of the dimer 3: mp 165-170 ; tlc (alumina) $R_{f}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) 0.72$, (ether$\left.\mathrm{CCl}_{4}, 1: 9\right) 0.68$, (ether-hexane, $15: 85$) 0.49 ; admixture with synthetic dimer tlc (alumina) R_{f} values are the same as for the natural dimer, mp 165-172 ${ }^{\circ} ;[\alpha]^{25} \mathrm{D}-93^{\circ} \pm 5\left(c 0.26 \mathrm{~g} / 100 \mathrm{ml}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, ; ir $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 6.08(\mathrm{w}), 6.29(\mathrm{w}), 6.68(\mathrm{~m}, \mathrm{sp}), 7.36(\mathrm{~m}), 8.10(\mathrm{w}), 8.24(\mathrm{w})$, $8.55(\mathrm{~s}), 8.69(\mathrm{~s}), 8.91(\mathrm{~s}), 9.14(\mathrm{w}), 9.32(\mathrm{~s}, \mathrm{sp}), 9.43(\mathrm{~m}, \mathrm{sp}), 9.67$ $(\mathrm{s}, \mathrm{sp}), 9.82(\mathrm{~s}, \mathrm{sp}), 9.94(\mathrm{~s}, \mathrm{sp}), 10.08(\mathrm{~s}, \mathrm{sp}), 11.47(\mathrm{~s}, \mathrm{sp}), 12.39(\mathrm{~m})$, 12.68μ (s, br) and identical with the ir of the synthesized sample; $\mathrm{nmr}\left(100 \mathrm{MHz}\right.$, time averaged, $\left.\mathrm{CCl}_{4}\right) \delta 0.87,0.89,0.91(\mathrm{~m}, \sim 12 \mathrm{H}$, HCCH_{3} and ROCCH_{3}), 3.75-4.10 (m, C4 and $\mathrm{C}_{4}, \mathrm{H}$), 3.89 ($\mathrm{s}, \mathrm{C}_{6}$ and $\left.\mathrm{C}_{6}{ }^{\prime} \mathrm{H}\right), 6.08$ (br s, $2 \mathrm{H}, \beta$-furyl H$), 7.11(\mathrm{~d}, 4 \mathrm{H}, \alpha$-furyl H$)$, and identical with the nmr of the synthesized sample; mass spectrum $m / e\left(\% \mathrm{rel}\right.$ intensity) $493\left(\mathrm{M}^{+}-1\right)(0.5), 231(100)$; ORD ($c 240 \mathrm{mg} /$ 100 ml , hexane, $l=0.1 \mathrm{dm})[\Phi]_{400}-1040^{\circ},[\Phi]_{350}-1300^{\circ},[\Phi]_{300}-$ $1560^{\circ},[\Phi]_{284}-1600^{\circ},[\Phi]_{260}-1520^{\circ},[\Phi]_{244}-1340^{\circ},[\Phi]_{240}-1440^{\circ}$, $[\Phi]_{231}-3630^{\circ},[\Phi]_{230}-2970^{\circ}$

Tlc (alumina, ether- $0.4 \% \mathrm{MeOH}$) of fraction 2 showed three spots, $R_{i} 0.35,0.53$, and 0.73 . Tle separation (alumina, ether$0.4 \% \mathrm{MeOH}$) of the component corresponding to $R_{\mathrm{f}} 0.53$ gave 22 mg of a sticky oil, supposedly deoxynupharidin-6,7 β-diol: ir $2.8-$ 3.1 (w, br), 6.0 (w), 6.69 (s, sp), $11.45 \mu(\mathrm{~s}, \mathrm{sp})$; nmr $\left(\mathrm{CCl}_{4}\right) \delta 0.91$ $\left(\mathrm{m}, \mathrm{HCCH}_{3}\right), 1.28\left(\mathrm{~s}, \mathrm{HOCCH}_{3}\right), 4.0-3.3\left(\mathrm{~m}, \mathrm{C}_{6} H\right.$ and $\left.\mathrm{C}_{4} H\right), 6.39$ (br s, $1 \mathrm{H}, \beta$-furyl H), 7.34 (m, $2 \mathrm{H}, \alpha$-furyl H). After storage for 2 days in the refrigerator under nitrogen, a sample gave a tlc (alumina, ether $-0.4 \% \mathrm{MeOH})$ showing $R_{\mathrm{f}} 0.53$ and 0.95 .

Another fraction, 5.7 mg containing the dimer (tlc, alumina, $\mathrm{C}_{6} \mathrm{H}_{6}, R_{\mathrm{f}} 0.72$) but also containing a uv-active impurity, was treated with 5 ml of methanol, 0.5 ml of 0.12 M aqueous HCl , and 5 ml of water. The methanol was removed by evacuating the mixture at 30° for 1 hr . The remaining mixture was extracted with ethyl ether. The water layer was basified to pH 12 and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was dried and evaporated to dryness to obtain 2.9 mg of colorless residue presumably deoxynupharidin-6,7β-diol: tlc alumina $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) R_{\mathrm{f}} 0.0$; ir $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2.8 \mu$. After storing neat at 0° for 2 days under nitrogen the tle spot corresponding to the dimer ($R_{\mathrm{f}} 0.72$) emerged. The ratio of diol to dimer appeared to be $1: 1$ judging from the intensities of the two spots. After 7 days of storage neat at 0° only the spot corresponding to the dimer was observed. The ir showed no band at 2.8μ.

Detection of the 6,7 α - and 6,7 β-Diols. A 270-g quantity of freshly ground slices of air-dried plant material was extracted according to essentially the same procedure described above except that proportionately smaller quantities of solvents purged with nitrogen were employed. The 119 mg of crude extract was chromatographed on 10 g of neutral alumina (activity I) previously purged with nitrogen. The column was eluted with 50 ml of $10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane (fraction $\mathrm{A} 1,17 \mathrm{mg}$), 50 ml of 10% $\mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ (fraction $\mathrm{A} 2,9.3 \mathrm{mg}$), 50 ml of $\mathrm{Et}_{2} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{6}, 1: 3$ (fraction $\mathrm{A} 3,6.0 \mathrm{mg}$), 20 ml of $\mathrm{Et}_{2} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{6}, 1: 1$ (fraction $\mathrm{A} 4,1.7 \mathrm{mg}$), 20 ml of $\mathrm{Et}_{2} \mathrm{O}$ (fraction $\mathrm{A} 5,0 \mathrm{mg}$), and 50 ml of MeOH (fraction A 6 , 41.6 mg).

Fraction A3 contained at least five components, three of which had R_{f} values corresponding to deoxynupharidin-7 β-ol ($R_{\mathrm{f}} 0.36$), 7-epideoxynupharidin-7 α-ol ($R_{\mathrm{f}} 0.51$), and 7-epideoxynupharidin$6,7 \alpha$-diol ($R_{\mathrm{f}} 0.63$) on tlc (alumina $\mathrm{GF}_{254}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (200:1)). Material corresponding to the 6.7α-diol was separated by preparative tlc (alumina $\mathrm{GF}_{254}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (200:1)) and thereafter was treated with 100 mg of NaBH_{4} in 2 ml of MeOH for 12 hr at 25°. The solid residue was filtered off. To the filtrate was added 5 ml of $\mathrm{H}_{2} \mathrm{O}$ and the bulk of the MeOH was removed at the rotary evaporator. Thereafter the aqueous mixture was extracted with $\mathrm{CH}_{2}{ }^{-}$ Cl_{2}. The extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Vacuum evaporation of solvent gave about 0.2 mg of residue containing 7-epideoxynu-pharidin- 7α-ol: tlc (microscope slide, alumina $G_{254}, 10 \mathrm{ml}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-1$ drop of MeOH) $R_{\mathrm{f}} 0.51$; tlc (microscope slide, alumina $\left.\mathrm{GF}_{254}, \mathrm{Et}_{2} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{6}(1: 2)\right) R_{\mathrm{f}} 0.69$; glc (10% Carbowax $20 \mathrm{M}, 6 \mathrm{ft} \times$ $\left.1 / 8 \mathrm{in} ., 220^{\circ}\right) 3.3 \mathrm{~min}$; glc (10% SE- 30 silicone rubber, $6 \mathrm{ft} \times 1 / 8 \mathrm{in}$., 170°) 8.0 min ; mass spectrum m / e (\% rel intensity) 249 (25.5), 178 (21.5), $136(45), 114$ (61), 94 (100).

Fraction A6, containing no deoxynupharidin- 7β-ol by tlc, in 0.5 ml of MeOH was treated with 64 mg of NaBH_{4} at 25° for 12 hr . Water (10 ml) was added and the bulk of the MeOH was removed at the rotary evaporator. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated to obtain 38.3 mg of residue which was chromatographed on 5 g of neutral alumina (activity II). Fractions $\mathrm{Bl}\left(20 \mathrm{ml}\right.$ of $\mathrm{C}_{6} \mathrm{H}_{6}, 0.3$ $\mathrm{mg})$, B2 (20 ml of $\mathrm{Et}_{2} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{6}(1: 1), 1.2 \mathrm{mg}$), and $\mathrm{B} 3(20 \mathrm{ml}$ of $\mathrm{Et}_{2} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{6}(1: 1), 0.2 \mathrm{mg}$) were obtained. Fraction B 2 contained
deoxynupharidin-7 β-ol: tlc (microscope slide alumina $G_{254}, 10$ ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-1$ drop of MeOH) $R_{\mathrm{f}} 0.43$; tlc (microscope slide, alumina $\left.\mathrm{GF}_{254}, \mathrm{Et}_{2} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{6}(1: 2)\right) R_{\mathrm{f}} 0.55$; glc (10% Carbowax 20 M , $6 \mathrm{ft} \times 1 / 8 \mathrm{in} ., 220^{\circ}$) 6.1 min ; glc (10% SE- 30 silicone rubber, $6 \mathrm{ft} \times$ $1 / 8$ in., 170°) 9.5 min ; ir identical with that of authentic sample (see below) ; mass spectrum m / e (\% rel intensity) 249 (26), 178 (23), 136 (52), 114 (77), 94 (100).

Deoxynupharidin-7 β-ol from $\mathrm{LiAH}_{4}, \mathrm{NaBH}_{4}$, and NaBD_{4} Reduction of Residue A. A $165-\mathrm{mg}$ sample of residue A in 4 ml of methanol was treated overnight at 25° with 50 mg of NaBH_{4}. Water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed by vacuum evaporation and the semisolid residue (160 mg) was chromatographed on alumina (activity III) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\mathrm{C}_{6} \mathrm{H}_{6}(12: 88)$ to obtain 19 mg of deoxynupharidin- 7β-ol: mp $101.5-102.5^{\circ} ;[\alpha]^{25} \mathrm{D}-121^{\circ}\left(c 0.5 \mathrm{~g} / 100 \mathrm{ml}, \mathrm{CHCl}_{3}\right)$; ir $\left(\mathrm{CCl}_{4}\right) 2.8-$ 3.2 (br, w), $3.66(\mathrm{~m}), 6.66(\mathrm{~m}, \mathrm{sp}), 6.86(\mathrm{~m}), 6.95(\mathrm{~m}), 7.26(\mathrm{~m}), 8.62$ (br, m), $9.40(\mathrm{~m}), 9.63(\mathrm{br}, \mathrm{s}), 11.43 \mu(\mathrm{sp}, \mathrm{s}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 0.92$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{HCCH}_{3}$), $1.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{HOCCH}_{3}\right), 1.30(\mathrm{br} \mathrm{s}, \mathrm{OH})$, $2.53\left(\mathrm{q}, J=11\right.$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}$ equatorial H$), 2.93(\mathrm{q}, J=7.5$ and $5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}$ axial H$), 6.2(\mathrm{~m}, 1 \mathrm{H}, \beta$-furyl H$), 7.23(\mathrm{~m}, 2 \mathrm{H}$, α-furyl H); mass spectrum m / e (\% rel intensity) $249(26)\left(\mathrm{M}^{+}\right), 234$ (7), 232 (13), 220 (9), 206 (14), 178 (23), 164 (10), 136 (50), 114 (64), 107 (29), 96 (37), 94 (100), 81 (30).

A $130-\mathrm{mg}$ sample of residue A was treated in 30 ml of ether with 160 mg of LiAlH_{4} under nitrogen for 2 hr at 25°. The ether was evaporated and the residue was treated with water and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ left 75 mg of oil which on elution chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{6}(1: 10)\right)$ on alumina (activity III) gave 40 mg of crystalline deoxynupharidin- 7β-ol whose physical properties were identical with those reported in the paragraph above.

A $140-\mathrm{mg}$ sample of residue A in 5 ml of methanol was treated with 150 mg of NaBD_{4} for 2.5 hr at 25°. The mixture was processed as in the experiment using NaBH_{4} to obtain 38 mg of deoxy-nupharidin-7 β-ol- $6-d_{1}: \quad \operatorname{nmr}\left(\mathrm{CCl}_{4}\right) \delta 2.53$ (br s, 1 H); ir $\left(\mathrm{CCl}_{4}\right) 4.8$ $\mu(\mathrm{w})$; mass spectrum m / e (\% rel intensity) 250 (12), 235 (6), 232 (10), 231 (10), 221 (8), 207 (12), 179 (21), 164 (9), 136 (52), 115 (66), 114 (23), 107 (16), 97 (27), $96(17), 95(22), 97(100), 81$ (30).

Deoxynupharidin- $\beta \beta$-ol from the Reduction of a Mixture of De-oxynupharidine- $6,7 \beta$-diol and $6,7 \beta$-Oxidodeoxynupharidine Dimer. A 3.3-mg mixture containing diol and dimer in 0.2 ml of MeOH was treated with 10 mg of NaBH_{4} at 25° for 30 min . The alumina tlc of the product was identical with the alumina tlc $\left(R_{\mathrm{f}} 0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{CH}_{3} \mathrm{OH}$ (150:1)) of deoxynupharidin- 7β-ol obtained by reduction of residue A and synthesis and different from the alumina tlc of 7-epideoxynupharidin- α-ol ($R_{\mathrm{f}} 0.59, \mathrm{CH}_{3} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}$ (150:1)).

Osmium Tetroxide Oxidation of Δ^{6}-Dehydrodeoxynupharidine. A $545-\mathrm{mg}$ sample of the title enamine ${ }^{6}$ and 645 mg of osmium tetroxide in 25 ml of anhydrous ether was stirred under nitrogen for 6 days at 25°. The solvent was evaporated at reduced pressure. The residue was dissolved in aqueous methanol and to the resulting solution was added 6 g of sodium sulfite. After 2 hr the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract was dried. Evaporation of the solvent at reduced pressure gave 621 mg of green-colored oil which was chromatographed on alumina (50 g , activity II) using 100 ml of hexane, 500 ml of hexane-ether ($1: 1$), 300 ml of ether, and 200 ml of $2 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The ether fraction yielded 246 mg of colorless, crystalline 7-epideoxynupharidin-6,7 α-diol: mp $176-177^{\circ}$ ($1 \% \mathrm{~min}$). The optical rotation was observed to change with time. Therefore, the rotation (α) was measured over the course of 6.5 hr and a straight line plot of $\log \alpha$ against time gave an extrapolated value of $[\alpha]^{25} \mathrm{D}-64^{\circ}\left(c 0.5 \mathrm{~g} / 100 \mathrm{ml}, \mathrm{CHCl}_{3}\right)$ for time zero. Tlc (alumina, $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 13)$) $R_{\mathrm{f}} 0.47$; ir $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $2.81(\mathrm{w}, \mathrm{sp}), 2.88(\mathrm{w}, \mathrm{sp}), 6.24(\mathrm{w}), 6.70(\mathrm{~m}, \mathrm{sp}), 7.30(\mathrm{~m}), 7.58(\mathrm{w})$, $8.70(\mathrm{~m}), 8.86(\mathrm{~m}), 9.74(\mathrm{~s}), 11.49(\mathrm{~s}, \mathrm{sp}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{~d}$, $\left.J=4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{HCCH}_{3}\right), 1.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{HOCC} H_{3}\right), 1.87(\mathrm{~d}, J=5.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{HC}_{6} \mathrm{OH}\right), 3.04\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COH}\right), 3.68(\mathrm{q}, J=6$ and 7.5 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}\right), 4.10\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOC}_{6} H\right), 6.41(\mathrm{~m}, 1 \mathrm{H}, \beta-$ furyl H), $7.42(\mathrm{~m}, 2 \mathrm{H}, \alpha$-furyl H) ; mass spectrum m / e (\% rel intensity) $265(13)\left(\mathrm{M}^{+}\right), 248(7), 247(24), 232(13), 219(48), 204(100)$, 191 (29), 176(35), 136(20), 107 (23), 94 (61).

Anal. Calcd for $\mathrm{C}_{1.5} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, $67.92 ; \mathrm{H}, 8.74 ; \mathrm{N}, 5.28$. Found: C, 67.76; H, 8.80; N, 5.17.

The $2 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ fraction yielded 138 mg of sticky oil which on tlc (alumina, $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:13)) revealed three spots ($R_{\mathrm{f}} 0.07,0.47,0.92$). Further chromatography on alumina (activity III) with 40 ml each of hexane, $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{6}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 200 ml of $\mathrm{Et}_{2} \mathrm{O}$ gave fractions $1(19.5 \mathrm{mg}), 2(0 \mathrm{mg})$, $3(0 \mathrm{mg}), 4(16 \mathrm{mg})$, and $5(21.3 \mathrm{mg})$, respectively. Fraction 1 was the pure dimer of $6,7 \beta$-oxidodeoxynupharidine (3): tlc alumina
R_{f} (ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:13)) 0.92, (ether- CCl_{4} (1:9)) 0.68 , (etherhexane (15:85)) 0.49, ($\mathrm{C}_{6} \mathrm{H}_{6}$) 0.72; mp 164-174 ${ }^{\circ} ;[\alpha]^{25} \mathrm{D}-83^{\circ}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c 1.98 \mathrm{~g} / 100 \mathrm{ml}\right)$; ir $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{OH}$ absent, $3.41,3.50,5.80$ (w), 6.30 (w), $6.78,6.88,7.32,8.52,8.90,9.75,9.80,9.92,11.45 \mu$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.92\left(\mathrm{br} \mathrm{s}, 12 \mathrm{H}, \mathrm{HCCH} \mathrm{C}_{3}\right.$ and $\left.\mathrm{ROCCH}_{3}\right), 3.94(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{C}_{4}$ and $\mathrm{C}_{4^{\prime}} \mathrm{H}$), 4.06 (br s, $2 \mathrm{H}, \mathrm{C}_{6}$ and $\mathrm{C}_{6^{\prime}} \mathrm{H}$), $6.25(\mathrm{~m}, 2 \mathrm{H}, \beta$ furyl H), $7.30(\mathrm{~m}, 4 \mathrm{H}, \alpha$-furyl H$)$; nmr ($\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) 0.83(6 \mathrm{H}, \mathrm{m}, \mathrm{HC}-$ CH_{3}), $1.14\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ROCCH}_{3}\right), 3.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{4}\right.$ and $\left.\mathrm{C}_{4}{ }^{\prime} \mathrm{H}\right), 4.28$ (br s, $1 \mathrm{H}, \mathrm{C}_{6}$ or $\mathrm{C}_{6^{\prime}} \mathrm{H}$), 4.40 (br s, $1 \mathrm{H}, \mathrm{C}_{6^{\prime}}$ or $\mathrm{C}_{6} \mathrm{H}$); nmr (100 $\left.\mathrm{MHz}, \mathrm{CCl}_{4}\right) 0.87\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{HCCH}_{3}\right.$ and $\left.\mathrm{ROCCH}_{3}\right) ; \delta 3.59(\mathrm{q}, \mathrm{J}=$ 2 and $6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}$ or $\mathrm{C}_{4^{\prime}} \mathrm{H}$), $3.68\left(\mathrm{q}, J=2\right.$ and $6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4^{\prime}}$ or $\mathrm{C}_{4} \mathrm{H}$), 3.86 (br s, $2 \mathrm{H}, \mathrm{C}_{6}$ and $\mathrm{C}_{6^{\prime}} \mathrm{H}$), 6.06 (br s, $2 \mathrm{H}, \beta$-furyl H), 7.06 (br s, $2 \mathrm{H}, \alpha$-furyl H), 7.19 (m, 2 H, α-furyl H); mass spectrum m / e ($\%$ rel intensity) 493 (0.5), 248 (2), 247 (0.8), 246 (2), 233 (1), 232 (17), 231 (100), 230 (3), 216 (2), 204 (1), 176 (0.5), 136 (2), 107 (2), 96 (5), 95 (2), 94 (6), 81 (2); high-resolution mass spectrum obsd/calcd (formula), 493.3106/493.3066 $\left(\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4}\right), 248.1646 /$ 248.1650 ($\left.\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}\right)$, 231.1643/231.1623 ($\left.\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}\right)$; isobutane chemically induced mass spectra m / e ($\%$ rel intensity formula) 551 (14, M $+\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}$), 495 ($16, \mathrm{M}+\mathrm{H}^{+}$), 369 (2), 355 (4), 304 (7), 248 (100), 232 (4), 231 (3), 230 (5); ORD (c $246 \mathrm{mg} / 100 \mathrm{ml}$, hexane, $l=$ $0.1 \mathrm{dm})[\Phi]_{400}-965^{\circ},[\Phi]_{300}-1190^{\circ},[\Phi]_{300}-1480^{\circ},[\Phi]_{84}-1520^{\circ}$, $[\Phi]_{24}-1400^{\circ},[\Phi]_{240}-1510^{\circ},[\Phi]_{231}-3860^{\circ},[\Phi]_{230}-2750^{\circ}$
Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 72.85 ; \mathrm{H}, 8.56 ; \mathrm{N}, 5.67$. Found: C, 72.77; H, 8.60; N, 5.69.

An 8 -mg sample of the dimer was treated at 25° with 1.7 ml of aqueous HClO_{4} and sufficient acetone to obtain a homogeneous solution. The solvents were removed by vacuum evaporation and the residue was recrystallized from acetone to obtain a crystalline solid: decomposition point 235° with no melting; ir (KBr) 5.9μ; mass spectrum (\% rel intensity) 248 (17), 247 (15), 232 (50), 231 (62), 219 (15), 204 (100), 176 (27), 107 (27), 94 (98)

As determined by alumina tlc $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(13 ; 2)\right.$), elution fraction 4 contained the $6,7 \alpha$-diol ($R_{\mathrm{f}} 0.47$) and the $6,7 \beta$-diol ($R_{\mathrm{f}} 0.07$). Elution fraction $5\left(\mathrm{mp} 60-65^{\circ}\right.$) contained the $6,7 \beta-\mathrm{diol}\left(R_{\mathrm{f}} 0.07\right)$ and the dimer of $6,7 \beta$-oxidodeoxynupharidine ($R_{t} 0.92$).

Air Oxidation of Δ^{6}-Dehy drodeoxynupharidine. A solution of 72 mg of the Δ^{6}-enamine in 10 ml of ether was stirred at 25° for 5 days. Evaporation of the solvent left a brown oil which on tlc (alumina $\mathrm{GF}_{254}, 10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) gave $R_{\mathrm{f}} 0.77$ ($6,7 \beta$-oxido dimer), R_{f} 0.33 ($6,7 \alpha$-diol), and $R_{f} 0.0$. The brown oil in $2 \% \mathrm{MeOH}$ in $\mathrm{Et}_{2} \mathrm{O}$ solution was filtered through 2 g of alumina (activity III). Evaporation of the solvent from the filtrate gave 49 mg of residue which was dissolved in 20 ml of MeOH and treated with 100 mg of NaBH_{4} for 26 hr at 25°. Water (10 ml) was added and the bulk of the MeOH was removed at the rotary evaporator. The aqueous mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract washed with 0.20 N aqueous HCl . The aqueous solution was basified with 5 ml of $2 N$ NaOH and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of solvent and elution chromatography of the residue on 3 g of alumina (activity IIl) with $\mathrm{C}_{6} \mathrm{H}_{8}$ left 2.7 mg of a mixture of two bases: thc (alumina $\mathrm{GF}_{254}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (150:1)) $R_{\mathrm{f}} 0.57$ (deoxynupharidin- 7β-ol) and 0.86 (7-epideoxynupharidin7α-ol); ir $\left(\mathrm{CCl}_{4}\right) 2.83,3.6$, and 11.45μ; mass spectrum m / e ($\% \mathrm{rel}$ intensity) 249 (26) (M+), 232 (3), 231 (5), 230 (2), 206 (12), 178 (22), $136(51), 114(82), 107(27), 94$ (100); glc (10% SE-30 silicone rubber, $6 \mathrm{ft} \times 1 / 8$ in., 175°) 7.3 (7 -epideoxynupharidin- 7α-ol) and 8.4 \min (deoxynupharidin- $7 \beta-\mathrm{ol}$); glc (10% Carbowax $20 \mathrm{M}, 6 \mathrm{ft} \times$ $1 / 8$ in., 220°) 3.3 (7 -epideoxynupharidin- 7α-ol) and 6.1 min (deoxynupharidin 7β-ol).

Dimer of 6,7 α-Oxidodeoxynupharidine from 7-Epideoxynu-pharidine-6,7 α-diol. An 18 -mg sample of the $6,7 \alpha$-diol in dry benzene was heated to reflux under nitrogen for 2 days with azeotropic removal of the water. Vacuum evaporation of the solvent gave 18 mg of the dimer: $\mathrm{mp} 176-177^{\circ}$; $[\alpha]^{25_{546}}+9.6^{\circ}$ (c $0.54 \mathrm{~g} / 100$ $\left.\mathrm{ml}, \mathrm{CHCl}_{3}\right) ;[\alpha]^{25}{ }_{588}+3.1^{\circ}\left(c 0.54 \mathrm{~g} / 100 \mathrm{ml}, \mathrm{CHCl}_{3}\right.$,); ir $\left(\mathrm{CHCl}_{3}\right)$, OH absent, $6.24(\mathrm{w}), 6.69(\mathrm{~m}), 8.51(\mathrm{~s}), 8.73(\mathrm{~s}), 9.11(\mathrm{~m}), 9.41(\mathrm{~s})$, $9.7(\mathrm{~m}), 9.82(\mathrm{~s}), 10.08(\mathrm{~s}), 10.2(\mathrm{~s}), 11.47(\mathrm{~s}, \mathrm{sp}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.71$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{ROCCH} \mathrm{H}_{3}$), $4.79\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{6}\right.$ and $\mathrm{C}_{6^{\prime}} \mathrm{H}$), 6.27 (br s, $2 \mathrm{H}, \beta-$ furyl H), $7.23\left(\mathrm{~m}, 2 \mathrm{H}, \alpha\right.$-furyl), $7.37\left(\mathrm{~m}, 2 \mathrm{H}, \alpha\right.$-furyl); nmr ($\mathrm{C}_{6} \mathrm{H}_{6}$) $0.79\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HCCH}_{3}\right), 0.92\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ROCC} H_{3}\right), 3.75(\mathrm{~d}$ of $\mathrm{m}, J=12 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{4}$ and $\mathrm{C}_{4}, \mathrm{H}$), $4.04\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6}\right.$ and $\mathrm{C}_{6^{\prime}} \mathrm{H}$); mass spectrum m / e (\% rel intensity) 493 (0.2), 248 (2), 257 (2), 246 (1), 233 (2), 232 (17), 231 (100), 230 (3), 219 (2), 218 (1), 216 (3), 204 (5), 176 (3), 136 (1), 107 (2), 97 (1), 96 (5), 95 (2), 94 (8), 81 (2); high-resolution mass spectrum calcd/obsd (formula), 248.1677 / 248.1650 ($\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}$), 231.1631/231.1623 ($\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}$); isobutane chemically induced mass spectrum m / e ($\%$ rel intensity, formula) 551 (20, M $+\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}$), 495 ($30, \mathrm{M}+\mathrm{H}^{+}$), 304 (35), 248 (100), 232 (8), 231 (5), 230 (4); ORD (c $263 \mathrm{mg} / 100 \mathrm{ml}$, hexane, $l=0.1 \mathrm{dm}$)
$[\Phi]_{400}+188^{\circ},[\Phi]_{350}+188^{\circ},[\Phi]_{300}+70^{\circ},[\Phi]_{223} 0^{\circ},[\Phi]_{250}-1245^{\circ}$, $[\Phi]_{230}-3240^{\circ},[\Phi]_{225}-4390^{\circ},[\Phi]_{221}-3480^{\circ}$

Detection of the Mixed Dimer. One milligram each of $6,7 \beta$ oxidodeoxynupharidine dimer and 7 -epideoxynupharidine-6,7 α diol in 20 ml of methanol was treated with 2 ml of $0.12 N$ aqueous HCl . The methanol was evaporated, the resulting aqueous mixture was saturated with NaCl , and the pH was adjusted to 12 with aqueous NaOH and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. The residue $(2.4 \mathrm{mg})$ was stored in the refrigerator for 4 days. Tic (silica gel on a microscope slide, $\mathrm{GF}_{254-886}$, twice developed with $\mathrm{CH}_{3} \mathrm{CN}$-benzene (1:5)) showed $R_{\mathrm{f}} 0.0,0.68$, and 0.85 , (alumina $\mathrm{GF}_{254}, 1.8 \% \mathrm{CH}_{3} \mathrm{CN}-$ hexane) $R_{\mathrm{f}} 0.0,0.48$, and 0.58 , the first two spots having R_{f} values identical with the R_{f} values of 7 -epideoxynupharidine- $6,7 \alpha$-diol and $6,7 \beta$-oxidodeoxynupharidine dimer, respectively. Material corresponding to $R_{\mathrm{f}} 0.48$ was extracted from the alumina and was reduced with NaBH_{4} in 10 drops of MeOH at 25° for 30 min . The solvent was evaporated and the residue was extracted to obtain a residue: thc (alumina $\mathrm{GF}_{254}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(15: 1.0)$) $R_{\mathrm{f}} 0.40$, identical with the R_{f} of deoxynupharidin- 7β-ol and different from 7-epideoxynupharidin-7 α-ol $\left(R_{f} 0.55\right)$.

Material corresponding to $R_{\mathrm{f}} 0.58$ on the original plate was extracted from the alumina and was reduced with NaBH_{4} in the manner described above to obtain a residue: tic (alumina GF_{254}, on a microscope slide, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(15: 0.1)$) $R_{f} 0.40$ and 0.55 and identical with R_{f} values of deoxynupharidin- 7β-ol and epideoxy-nupharidin- 7α-ol, respectively.

Next the original plate was developed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ (15:2). The $R_{\mathrm{f}} 0.0$ present originally was absent and $R_{\mathrm{f}} 0.37$ appeared. The latter spot was identical with the R_{f} value of 7-epideoxynupharidine$6,7 \alpha$-diol. Tle of $6,7 \alpha$-oxido- 7 -epideoxynupharidine dimer also gave $R_{\mathrm{f}} 0.37$ under the same conditions.

7-Epideoxynupharidin-7 α-ol from 7-Epideoxynupharidine-6,7 α diol. A $110-\mathrm{mg}$ sample of the $6,7 \alpha$-diol in 10 ml of MeOH was treated with 300 mg of NaBH_{4} for 10 hr . The MeOH was evaporated and the residue was mixed with water and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was dried. Evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 91 mg of oil which was eluted from neutral alumina (5 g , activity III) with benzene to obtain 75 mg of 7-epideoxynupharidin- 7α-ol: $\mathrm{mp} 35-37^{\circ}$; $[\alpha]^{25} \mathrm{D}-105^{\circ}(c$ $0.62 \mathrm{~g} / 100 \mathrm{ml}, 95 \% \mathrm{EtOH})$; ir $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2.86$ (s), $3.6-3.8(\mathrm{w}), 6.24$ (w), $6.64(\mathrm{~m}), 7.14(\mathrm{~m}), 8.22(\mathrm{~m}), 7.33(\mathrm{~m}), 7.48(\mathrm{~m}), 7.52(\mathrm{~m}), 8.62$ (s), 8.84 (s), 11.49 (s), $12.6 \mu(\mathrm{br}, \mathrm{s}) ;$ ir ($\left(\mathrm{CCl}_{4}, 0.21 M\right) 3520 \mathrm{~cm}^{-1}$; ir $\left(\mathrm{CCl}_{4}, 0.01 \mathrm{M}\right) 3520 \mathrm{~cm}^{-1} ; \operatorname{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{~d}, J=6 \mathrm{~Hz}$, HCCH_{3}), $1.02\left(\mathrm{~s}, 6 \mathrm{H}\right.$ with $\left.0.99, \mathrm{HOCCH}_{3}\right), 2.70(\mathrm{q}, J=11.5$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}$ equatorial H$), 3.07\left(\mathrm{q}, J=5\right.$ and $\left.7.5 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}\right)$, 6.38 (br s, $1 \mathrm{H}, \beta$-furyl H), 7.36 (m, $2 \mathrm{H}, \alpha$-furryl H); mass spectrum m / e (\% rel intensity) 249 ($\mathrm{M}^{+}, 45$), 248 (14), 234 (8), 232 (6), 220 (13), 206 (29), 194 (7), 178 (32), 164 (10), 148 (12), 136 (60), 121 (12), 114 (80), 107 (29), $96(31), 94$ (100), 81 (28).

Anal. Calcd for $\mathrm{C}_{1} ; \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 72.25; $\mathrm{H}, 9.30 ; \mathrm{N}, 5.62$. Found: C, 72.44; H, 9.29; N, 5.50.
Deoxynupharidin- 7β-ol from Deoxynupharidine-6,7 β-diol and 6,7及-Oxidodeoxynupharidine Dimer. Elution fraction 5 (20 mg; see the last paragraph of the subsection dealing with the OsO_{4} oxidation for fraction identification) in 1 ml of EtOH was treated with 20 ml of NaBH_{4} at 60° for 3 hr . Alumina tlc $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right.$ (13:2)) showed two spots ($R_{f} 0.6$ and 0.8). Vacuum evaporation of solvent gave a residue which was mixed with water. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined extracts were dried. Vacuum evaporation of the solvent left 22 mg of residue which was eluted from 3 g of neutral alumina (activity III) with four $20-\mathrm{ml}$ portions of n-hexane, to obtain fractions $1(2.3 \mathrm{mg}), 2(1.9 \mathrm{mg})$, $3(0.2 \mathrm{mg})$, and $4(0 \mathrm{mg})$. Continued elution with 40 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $20 \% \mathrm{Et}_{2} \mathrm{O}$ gave 12.2 mg of deoxynupharidin- 7β-ol, $\mathrm{mp} 99-100^{\circ}$. Rechromatography in the manner described gave the 7β-ol: mp $101.5-102.5^{\circ} ;[\alpha]^{25} \mathrm{D}-120^{\circ}$ (c $0.635 \mathrm{~g} / 100 \mathrm{ml}, 95 \% \mathrm{EtOH}$); ir $\left(\mathrm{CCl}_{4}, 0.204 \mathrm{M}\right) 3610$ (free OH), $3520-3300 \mathrm{~cm}^{-1}$ (bonded OH); ir ($\left.\mathrm{CCl}_{4}, 0.01 \mathrm{M}\right) 3610$ (free OH), $3520-3300 \mathrm{~cm}^{-1}$ absent; ir and nmr were identical with spectra of the sample obtained from LiAlH_{4} and NaBH_{4}, reduction of residue A ; mass spectrum m / e ($\%$ rel intensity) $249\left(\mathrm{M}^{+}, 59\right.$), 248 (16), 234 (8), 232 (11), 220 (10), 206 (13), 194 (5), 178 (28), 164 (7), 148 (7), 126 (74), 121 (8), 114 (100), 107 (23), 96 (27), 94 (90), 81 (22); high-resolution mass spectrum [obsd (calcd), (formula)] 249.1720 (249.1729) $\left(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2}\right), 136.0885$ (136.0888) ($\left.\mathrm{C}_{8} \mathrm{H}_{22} \mathrm{O}\right), 114.0921$ (114,0919) $\left(\mathrm{C}_{6} \mathrm{H}_{41} \mathrm{NO}\right), 107.0495$ (107.0497) ($\left.\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right), 96.0808$ (96.0813) $\left(\mathrm{C}_{6} \mathrm{H}_{1} \mathrm{~N}\right), 94.0415$ (94.0419) ($\left.\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}\right)$.

Anal. Caled for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{C}, 72.25 ; \mathrm{H}, 9.30 ; \mathrm{N}, 5.62$. Found: C, 72.09; H, 9.23; N, 5.44.

[^0]: (1) Support of this work by the National Institutes of Health, U. S. Public Health Service (Grant No. AI 10188), is gratefully acknowledged. (2) (a) J. T. Wróbel, Alkaloids, 9, 441 (1967); (b) O. E. Edwards, "Cyclopentanoid Terpene Derivatives," W. I. Taylor and A. R. Battersby, Ed., Marcel Dekker, New York, N. Y., 1968, Chapter 6.
 (3) (a) O. Achmatowicz and J. T. Wróbel, Tetrahedron Lett., 129 (1964); (b) O. Achmatowicz, H. Banazek, G. Spiteller, and J. T. Wróbel, ibid., 927 (1964); (c) G. I. Birnbaum, ibid., 4149 (1965).
 (4) R. T. LaLonde, C. F. Wong, and W. P. Cullen, ibid., 4477 (1970).
 (5) (a) C. L. Stevens and P. M. Pillai, J. Amer. Chem. Soc., 89, 3084 (1967); (b) C. L. Stevens and P. M. Pillai, J. Org. Chem., 37, 173 (1972).
 (6) K. Baum, J. Amer. Chem. Soc., 90, 7083 (1968).
 (7) S. Laeuber and F. Lingens, Z. Anal. Chem., 181, 494 (1961).

[^1]: (8) R. T. LaLonde, E. Auer, C. F. Wong, and V. P. Muralidharan, J. Amer. Chem. Soc., 93, 2501 (1971).

[^2]: (10) C. F. Wong, E. Auer, and R. T. LaLonde, J. Org. Chem., 35, 517 (1970).
 (11) S. Sternhell, Quart. Rev., Chem. Soc., 23, 259 (1969).

[^3]: (12) (a) F. Bohlmann, Chem. Ber., 91, 2157 (1958); (b) M. W. Wiewiorowski and J. Skolick, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 10, 1 (1962).

[^4]: Anderson, Tetrahedron Lett., 4713 (1965), and (b) D. H. Williams and N. S. Bhacca, Tetrahedron, 21, 1641 (1964).
 (15) For comparison, the necessity of a boat dioxane in 3 b is also a requirement of the central six-membered ring in the trans-anti-transperhydrophenanthrene system; see W. G. Dauben and K. S. Pitzer, "Steric Effects in Organic Chemistry," M. S. Newman, Ed., Wiley, New York, N. Y., 1956, Chapter 1.
 (16) K. Mislow and M. Raban، Top. Stereochem., 1, 1 (1967).

